Ideal pseudointersection numbers

Jaroslav Šupina

Institute of Mathematics Faculty of Science P.J. Šafárik University in Košice

 26^{th} of January 2020

▶ p (F. Rothberger 1948)

▶ p (F. Rothberger 1948)

- (J. Brendle and S. Shelah 1999, $\pi \mathfrak{p}(\mathcal{U})$ F. Hernández and M. Hrušák 2007)
- ► cov*(*I*)

▶ p (F. Rothberger 1948)

- ▶ $\mathfrak{p}_{\Box}(\mathcal{J})$ (P. Borodulin–Nadzieja and B. Farkas 2012)

p (F. Rothberger 1948)

- ▶ $\mathfrak{p}_{\Box}(\mathcal{J})$ (P. Borodulin–Nadzieja and B. Farkas 2012)
- ▶ $\mathfrak{p}_{\Box}(\mathcal{I}, \mathcal{J})$ (M. Repický 2018)

p (F. Rothberger 1948)

- ▶ $\mathfrak{p}_{\Box}(\mathcal{J})$ (P. Borodulin–Nadzieja and B. Farkas 2012)
- ▶ $\mathfrak{p}_{\Box}(\mathcal{I}, \mathcal{J})$ (M. Repický 2018)

•
$$\lambda(\triangle, \nabla)$$
 (V. Šottová and J.Š.)

•
$$\min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\} \le \mathfrak{b}$$
 (P. Nyikos)

•
$$\min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\} \le \mathfrak{b}$$
 (P. Nyikos)

$$\blacktriangleright \min\{\operatorname{cov}^*(\mathcal{I}), \mathfrak{b}\} = \lambda(\mathcal{I}, \operatorname{Fin}) \qquad (V. \operatorname{\check{S}ottov} \acute{a} \operatorname{and} J. \check{S}. 2019)$$

•
$$\min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\} \leq \mathfrak{b}$$
 (P. Nyikos)

•
$$\min\{\operatorname{cov}^*(\mathcal{I}), \mathfrak{b}\} = \lambda(\mathcal{I}, \operatorname{Fin})$$
 (V. Šottová and J.Š. 2019)

$$\blacktriangleright \min\{\mathtt{cov}^*(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\} = \mathfrak{p}$$

•
$$\min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\} \le \mathfrak{b}$$
 (P. Nyikos)

•
$$\min\{\operatorname{cov}^*(\mathcal{I}), \mathfrak{b}\} = \lambda(\mathcal{I}, \operatorname{Fin})$$
 (V. Šottová and J.Š. 2019)

$$\blacktriangleright \min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\} = \mathfrak{p}$$

$$\blacktriangleright \min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})\} = \operatorname{cov}^*(\mathcal{I})$$

•
$$\min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\} \le \mathfrak{b}$$
 (P. Nyikos)

•
$$\min\{\operatorname{cov}^*(\mathcal{I}), \mathfrak{b}\} = \lambda(\mathcal{I}, \operatorname{Fin})$$
 (V. Šottová and J.Š. 2019)

$$\blacktriangleright \min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\} = \mathfrak{p}$$

$$\blacktriangleright \min\{\operatorname{cov}^*(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})\} = \operatorname{cov}^*(\mathcal{I})$$

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{\mathbf{ct}}, \Gamma_0)$ -space.

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{\mathbf{ct}}, \Gamma_0)$ -space.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{\mathbf{c} \mathbf{t}}, \Gamma_0)$ -space.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{\mathbf{ct}}, \Gamma_0)$ -space.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

- there is a meager ideal \mathcal{I} ,
- there is a set of reals A of size ω₁,

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{\mathbf{ct}}, \Gamma_0)$ -space.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

- there is a meager ideal I,
- there is a set of reals A of size ω₁,
- C_p(A) has countable *I*-Fréchet-Urysohn property,
- $C_p(A)$ is not an $S_1(\Omega_0^{ct}, \mathcal{I} \cdot \Gamma_0)$ -space.

Problem 2: covering counterpart of *I*-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982) X is an $S_1(\Omega^{ct}, \Gamma)$ -space if and only if X has $\binom{\Omega^{ct}}{\Gamma}$. Problem 2: covering counterpart of *I*-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982) X is an $S_1(\Omega^{ct}, \Gamma)$ -space if and only if X has $\binom{\Omega^{ct}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna) Is it true that X is an $S_1(\Omega^{ct}, \mathcal{I}\text{-}\Gamma)$ -space if and only if X has $\begin{bmatrix} \Omega^{ct} \\ \mathcal{I}\text{-}\Gamma \end{bmatrix}$? Problem 2: covering counterpart of *I*-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982) X is an $S_1(\Omega^{ct}, \Gamma)$ -space if and only if X has $\binom{\Omega^{ct}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna) Is it true that X is an $S_1(\Omega^{ct}, \mathcal{I} \cdot \Gamma)$ -space if and only if X has $\begin{bmatrix} \Omega^{ct} \\ \mathcal{I} \cdot \Gamma \end{bmatrix}$?

P. Borodulin-Nadzieja and B. Farkas 2012

- there is a meager ideal I,
- there is a set of reals A of size ω₁,
- A has $\begin{bmatrix} \Omega^{\text{ct}} \\ \mathcal{I} \Gamma \end{bmatrix}$,
- A is not an $S_1(\Omega^{ct}, \mathcal{I} \cdot \Gamma)$ -space.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\operatorname{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\operatorname{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \operatorname{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\operatorname{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \operatorname{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\operatorname{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[\begin{smallmatrix}\Omega^{\mathtt{ct}}\\ \mathcal{J}\cdot\Gamma\big]\big) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[\begin{smallmatrix}\Omega^{\mathtt{ct}}\\ \mathcal{J}\cdot\Gamma\big]_{\mathrm{KB}}\big) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[\begin{smallmatrix}\Omega^{\mathtt{ct}}\\ \mathcal{J}\cdot\Gamma\big]_{1\cdot 1}\big) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Proposition} \\ \mbox{If } \mathcal{J} \mbox{ is a meager P-ideal then } \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}. \end{array}$

Pseudointersection numbers \mathfrak{p} and $\mathtt{cov}^*(\mathcal{I})$

 $\mathfrak{p} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \wedge \mathcal{A} \text{ does not have a pseudounion}\}$

Pseudointersection numbers $\mathfrak p$ and $\mathtt{cov}^*(\mathcal I)$

$$\mathfrak{p} = \min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \wedge \mathcal{A} \text{ does not have a pseudounion}\}$$

$$cov^*(\mathcal{I}) = min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ does not have a pseudounion}\}$$

Pseudointersection numbers $\mathfrak p$ and $\mathtt{cov}^*(\mathcal I)$

$$\mathfrak{p} \qquad \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \text{ does not have a pseudounion}\}$$

$$cov^*(\mathcal{I}) = min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ does not have a pseudounion}\}$$

Convention: $\min \emptyset = +\infty$

Pseudointersection numbers $\mathfrak p$ and $\mathtt{cov}^*(\mathcal I)$

$$\mathfrak{p} \qquad \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \text{ does not have a pseudounion}\}$$

$$cov^*(\mathcal{I}) = min\{|\mathcal{A}| : \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \text{ does not have a pseudounion}\}$$

Convention: $\min \emptyset = +\infty$

Fin	$Fin \times Fin$	S	$\mathcal{E}D$	$ \mathcal{R} $	conv	nwd
$+\infty$	b	$\mathtt{non}(\mathcal{N})$	$\mathtt{non}(\mathcal{M})$	c	c	$\mathtt{cov}(\mathcal{M})$

Observation If X is an $[\mathcal{J} \cdot \Gamma, \Gamma]$ -space and an $S_1(\Gamma, \mathcal{J} \cdot \Gamma)$ -space then X is an $S_1(\Gamma, \Gamma)$ -space.

Observation If X is an $[\mathcal{J}-\Gamma,\Gamma]$ -space and an $S_1(\Gamma,\mathcal{J}-\Gamma)$ -space then X is an $S_1(\Gamma,\Gamma)$ -space. Corollary

```
\min\{\operatorname{non}([\mathcal{J}\text{-}\Gamma,\Gamma]),\operatorname{non}(S_1(\Gamma,\mathcal{J}\text{-}\Gamma))\} \le \operatorname{non}(S_1(\Gamma,\Gamma))
```

 $\begin{array}{l} \textbf{Observation} \\ \textit{If } X \textit{ is an } [\mathcal{J}\text{-}\Gamma,\Gamma]\text{-}\textit{space and an } S_1(\Gamma,\mathcal{J}\text{-}\Gamma)\text{-}\textit{space then } X \textit{ is an } S_1(\Gamma,\Gamma)\text{-}\textit{space.} \\ \textbf{Corollary} \end{array}$

```
\min\{\operatorname{non}([\mathcal{J}\text{-}\Gamma,\Gamma]),\operatorname{non}(S_1(\Gamma,\mathcal{J}\text{-}\Gamma))\} \le \operatorname{non}(S_1(\Gamma,\Gamma))
```

• X is an $[\mathcal{J}$ - Γ , Γ]-space if for every $\langle V_n : n \in \omega \rangle$ of \mathcal{J} - γ -covers there is $\varphi \in {}^{\omega}\omega$ such that $\langle V_{\varphi(m)} : m \in \omega \rangle$ is a γ -cover.

Observation If X is an $[\mathcal{J}$ - $\Gamma, \Gamma]$ -space and an $S_1(\Gamma, \mathcal{J}$ - $\Gamma)$ -space then X is an $S_1(\Gamma, \Gamma)$ -space. Corollary

```
\min\{\operatorname{non}([\mathcal{J}\text{-}\Gamma,\Gamma]),\operatorname{non}(S_1(\Gamma,\mathcal{J}\text{-}\Gamma))\} \le \operatorname{non}(S_1(\Gamma,\Gamma))
```

- X is an $[\mathcal{J}$ - Γ , Γ]-space if for every $\langle V_n : n \in \omega \rangle$ of \mathcal{J} - γ -covers there is $\varphi \in {}^{\omega}\omega$ such that $\langle V_{\varphi(m)} : m \in \omega \rangle$ is a γ -cover.
- A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is \mathcal{J} - γ -cover if $\{n : x \notin V_n\} \in \mathcal{J}$ for every $x \in V_n$.

Observation If X is an $[\mathcal{J}$ - $\Gamma, \Gamma]$ -space and an $S_1(\Gamma, \mathcal{J}$ - $\Gamma)$ -space then X is an $S_1(\Gamma, \Gamma)$ -space. Corollary

```
\min\{\operatorname{non}([\mathcal{J}\text{-}\Gamma,\Gamma]),\operatorname{non}(S_1(\Gamma,\mathcal{J}\text{-}\Gamma))\} \le \operatorname{non}(S_1(\Gamma,\Gamma))
```

- X is an $[\mathcal{J}$ - Γ , Γ]-space if for every $\langle V_n : n \in \omega \rangle$ of \mathcal{J} - γ -covers there is $\varphi \in {}^{\omega}\omega$ such that $\langle V_{\varphi(m)} : m \in \omega \rangle$ is a γ -cover.
- A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is \mathcal{J} - γ -cover if $\{n : x \notin V_n\} \in \mathcal{J}$ for every $x \in V_n$.
- ► X is an S₁(Γ , \mathcal{J} - Γ)-space if for every $\langle \langle V_{n,m} : m \in \omega \rangle : n \in \omega \rangle$ of γ -covers there is $\varphi \in {}^{\omega}\omega$ such that $\langle V_{n,\varphi(n)} : n \in \omega \rangle$ is a \mathcal{J} - γ -cover.

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

$$\mathfrak{p} \qquad \qquad = \qquad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \operatorname{Fin}\}$$

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

$$\mathfrak{p} \qquad \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathrm{Fin}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

 $\mathfrak{p} \hspace{1cm} = \hspace{1cm} \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathrm{Fin}\}$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{I},\mathcal{J}) \quad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

 $\mathfrak{p} \hspace{1cm} = \hspace{1cm} \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathrm{Fin}\}$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{I},\mathcal{J}) \quad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{\mathfrak{p}_{\Box}(\mathcal{I},\mathcal{J}): \ \mathcal{I} \text{ is an ideal}\}$$

 $\Box \in \{1\text{-}1, \mathrm{KB}, \mathrm{K}\}$

 $\mathfrak{p} \qquad \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathrm{Fin}\}$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{P}(\omega) \text{ has fup } \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{I},\mathcal{J}) \quad = \quad \min\{|\mathcal{A}|: \ \mathcal{A} \subseteq \mathcal{I} \land \mathcal{A} \not\leq_{\Box} \mathcal{J}\}$$

$$\mathfrak{p}_{\Box}(\mathcal{J}) \qquad = \quad \min\{\mathfrak{p}_{\Box}(\mathcal{I},\mathcal{J}): \ \mathcal{I} \text{ is an ideal}\}$$

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH** the following hold.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH** the following hold.

(1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F}) = \mathfrak{p}_{KB}(\mathcal{F}) = \mathfrak{p}_{K}(\mathcal{F}) = \omega_{2}$.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH** the following hold.

- (1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F}) = \mathfrak{p}_{KB}(\mathcal{F}) = \mathfrak{p}_{K}(\mathcal{F}) = \omega_{2}$.
- (2) There is a meager filter \mathcal{G} with $\mathfrak{p}_{1-1}(\mathcal{G}) = \mathfrak{p}_{KB}(\mathcal{G}) = \omega_1$ and $\mathfrak{p}_K(\mathcal{G}) = \omega_2$.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC**+**GCH** the following hold.

- (1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F}) = \mathfrak{p}_{KB}(\mathcal{F}) = \mathfrak{p}_{K}(\mathcal{F}) = \omega_{2}$.
- (2) There is a meager filter \mathcal{G} with $\mathfrak{p}_{1-1}(\mathcal{G}) = \mathfrak{p}_{KB}(\mathcal{G}) = \omega_1$ and $\mathfrak{p}_K(\mathcal{G}) = \omega_2$.
- (3) $\mathfrak{p}_{1-1}(\mathcal{J}) = \mathfrak{p}_{KB}(\mathcal{J}) = \mathfrak{p}_{K}(\mathcal{J}) = \omega_1$ for every F_{σ} ideal \mathcal{J} and every analytic *P*-ideal \mathcal{J} .

Theorem (J. Gerlits and Zs. Nagy 1982) X is an $S_1(\Omega^{ct}, \Gamma)$ -space if and only if X has $\binom{\Omega^{ct}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna) Is it true that X is an $S_1(\Omega^{ct}, \mathcal{I} \cdot \Gamma)$ -space if and only if X has $\begin{bmatrix} \Omega^{ct} \\ \mathcal{I} \cdot \Gamma \end{bmatrix}$?

P. Borodulin-Nadzieja and B. Farkas 2012

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH**:

- there is a meager ideal I,
- there is a set of reals A of size ω₁,
- $A has \begin{bmatrix} \Omega^{ct} \\ \mathcal{I} \Gamma \end{bmatrix}$,
- A is not an $S_1(\Omega^{ct}, \mathcal{I}$ - $\Gamma)$ -space.

$$\operatorname{non}(\operatorname{S}_1(\Omega^{\operatorname{ct}}, \mathcal{J}\text{-}\Gamma)) = \lambda(*, \mathcal{J})$$

$$\mathtt{non}(\big[{}_{\mathcal{J}\text{-}\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{K}(\mathcal{J})$$

$$\mathtt{non}(\mathbf{S}_1(\Omega^{\mathtt{ct}},\mathcal{J}\text{-}\Gamma)) = \lambda(*,\mathcal{J}) \qquad \qquad \mathtt{non}([{}_{\mathcal{J}\text{-}\Gamma}^{\Omega^{\mathtt{ct}}}]) = \mathfrak{p}_{\mathbf{K}}(\mathcal{J})$$

A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is an ω -cover if for every $a \in [X]^{\leq \omega}$ there is n such that $a \subseteq V_n$. Ω^{ct}

$$\mathtt{non}(\mathbf{S}_1(\Omega^{\mathtt{ct}},\mathcal{J}\text{-}\Gamma)) = \lambda(*,\mathcal{J}) \qquad \qquad \mathtt{non}([{}_{\mathcal{J}\text{-}\Gamma}^{\Omega^{\mathtt{ct}}}]) = \mathfrak{p}_{\mathbf{K}}(\mathcal{J})$$

A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is an ω -cover if for every $a \in [X]^{\leq \omega}$ there is n such that $a \subseteq V_n$. Ω^{ct}

Proposition Let *X* be a topological space. If \mathcal{J} has Baire property then

X is an $S_1(\Omega^{ct}, \mathcal{J} \cdot \Gamma)$ -space if and only if X is an $S_1(\Omega^{ct}, \Gamma)$ -space.

$$\mathtt{non}(\mathbf{S}_1(\Omega^{\mathtt{ct}},\mathcal{J}\text{-}\Gamma)) = \lambda(*,\mathcal{J}) \qquad \qquad \mathtt{non}([{}_{\mathcal{J}\text{-}\Gamma}^{\Omega^{\mathtt{ct}}}]) = \mathfrak{p}_{\mathbf{K}}(\mathcal{J})$$

A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is an ω -cover if for every $a \in [X]^{\leq \omega}$ there is n such that $a \subseteq V_n$. Ω^{ct}

Proposition Let *X* be a topological space. If \mathcal{J} has Baire property then

X is an $S_1(\Omega^{ct}, \mathcal{J} \cdot \Gamma)$ -space if and only if *X* is an $S_1(\Omega^{ct}, \Gamma)$ -space.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH** there is a meager ideal $\mathcal J$ such that $\mathfrak{p}_K(\mathcal J) = \omega_2$.

Problem 1: countable *I*-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)

 $C_p(X)$ has countable Fréchet-Urysohn property if and only if $C_p(X)$ is an $S_1(\Omega_0^{ct}, \Gamma_0)$ -space countable covers.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

In a Cohen forcing model adding ω_2 many Cohen reals to a model of **ZFC+GCH**:

- there is a meager ideal I,
- there is a set of reals A of size ω₁,
- C_p(A) has countable *I*-Fréchet-Urysohn property,
- $C_p(A)$ is not an $S_1(\Omega_0^{ct}, \mathcal{I} \cdot \Gamma_0)$ -space.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012) Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathrm{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\mathrm{Oct}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Proposition} \\ \mbox{If } \mathcal{J} \mbox{ is a meager P-ideal then } \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}. \end{array}$

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

► X is an $[\Omega^{\text{ct}}, \mathcal{J}\text{-}\Gamma]_{\square}$ -space if for every ω -cover $\langle V_n : n \in \omega \rangle$ there is \square -function $\varphi \in {}^{\omega}\omega$ such that $\langle V_{\varphi(m)} : m \in \omega \rangle$ is a $\mathcal{J}\text{-}\gamma$ -cover.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{KB}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$\mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]) = \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{\mathrm{KB}}) = \mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \qquad \mathtt{non}(\big[{}_{\mathcal{J}\cdot\Gamma}^{\Omega^{\mathtt{ct}}}\big]_{1\cdot 1}) = \mathfrak{p}_{1\cdot 1}(\mathcal{J})$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

► X is an $[\Omega^{ct}, \mathcal{J}$ - $\Gamma]_{\square}$ -space if for every ω -cover $\langle V_n : n \in \omega \rangle$ there is \square -function $\varphi \in {}^{\omega}\omega$ such that $\langle V_{\varphi(m)} : m \in \omega \rangle$ is a \mathcal{J} - γ -cover.

Observation

If X is a topological space then the following are equivalent.

- (a) X is an $[\Omega^{ct}, \mathcal{J} \cdot \Gamma]_{\Box}$ -space.
- (b) For every family V which forms a countable open ω-cover there is a J γ-cover ⟨V_m : m ∈ ω⟩ such that V_m ∈ V and a set V_m may be repeated □-many times in the enumeration.

 $\label{eq:problem} \begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{If \mathcal{J} is meager then $\mathfrak{p}_{\rm KB}(\mathcal{J}) \leq \mathfrak{b}$.} \end{array}$

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{If \mathcal{J} is meager then $\mathfrak{p}_{\rm KB}(\mathcal{J}) \leq \mathfrak{b}$.} \end{array}$

 $\begin{array}{l} \mbox{Proposition (M. Repický 2018)} \\ \mbox{If \mathcal{J} is a P-ideal then $\mathfrak{p}_{\rm K}(\mathcal{I},\mathcal{J}) = \mathfrak{p}_{\rm KB}(\mathcal{I},\mathcal{J}).$ \end{array}$

 $\begin{array}{l} \mbox{Problem (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{Is } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b} \mbox{ for each analytic (P-)ideal } \mathcal{J}? \end{array}$

 $\begin{array}{l} \mbox{Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)} \\ \mbox{If \mathcal{J} is meager then $\mathfrak{p}_{\rm KB}(\mathcal{J}) \leq \mathfrak{b}.} \end{array}$

Proposition (M. Repický 2018) If \mathcal{J} is a P-ideal then $\mathfrak{p}_{K}(\mathcal{I}, \mathcal{J}) = \mathfrak{p}_{KB}(\mathcal{I}, \mathcal{J})$.

 $\begin{array}{l} \mbox{Corollary} \\ \mbox{If } \mathcal{J} \mbox{ is a meager P-ideal then } \mathfrak{p}_{\rm K}(\mathcal{J}) \leq \mathfrak{b}. \end{array}$

Critical cardinalities

Critical cardinalities

Principle $S_1(\mathcal{P}, \mathcal{R})$ and corresponding critical cardinality

Just W., Miller A.W., Scheepers M. and Szeptycki P.J., Combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.

Principle $S_1(\mathcal{P}, \mathcal{R})$ and ideal covers

Principle $S_1(\mathcal{P}, \mathcal{R})$ and corresponding critical cardinality

Critical cardinalities

Subsequence schema

Sample values

V. Šottová and J.Š. 2019, V. Šottová 2019

 $\lambda(\mathrm{Fin},\mathrm{Fin})=\mathfrak{b}$

$$\flat \ \lambda(\mathtt{S}, \mathrm{Fin}) = \lambda(\mathtt{S}, \mathtt{S}) = \min\{\mathtt{b}, \mathtt{non}(\mathcal{N})\}\$$

$$\blacktriangleright \ \lambda(\texttt{nwd},\texttt{Fin}) = \lambda(\texttt{nwd},\texttt{nwd}) = \texttt{add}(\mathcal{M})$$

$$\flat \ \lambda(\mathcal{R},\mathcal{J}) = \lambda(\operatorname{Fin},\mathcal{J}) = \mathfrak{b}_{\mathcal{J}}$$

$$\blacktriangleright \ \lambda(\operatorname{conv},\mathcal{J}) = \lambda(\operatorname{Fin},\mathcal{J}) = \mathfrak{b}_{\mathcal{J}}$$

• there is \mathcal{U} such that $\lambda(\mathcal{U}, Fin) = \mathfrak{p}$

- Borodulin–Nadzieja P. and Farkas B., Cardinal coefficients associated to certain orders on ideals, Arch. Math. Logic 51 (2012), 187–202.
- Brendle J. and Shelah S., Ultrafilters on ω -their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. **351** (1999), 2643–2674.

Gerlits J. and Nagy Zs., Some properties of $C_p(X)$, I, Topology Appl. 14 (1982), 151–161.

- Hernández F. and Hrušák M., Cardinal invariants of analytic P-ideals, Canad.J.Math. 59 (2007), 575-595.
- Hrušák M., Combinatorics of filters and ideals, Contemp. Math. 533 (2011), 29-69.
- Das P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), 637-650.
- Nyikos P., Special ultrafilters and cofinal subsets of ($^{\omega}\omega$, <*), preprint.

Repický M., Spaces not distinguishing ideal convergences of real-valued functions, preprint.

Rothberger F., On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46.

- Šottová V., Cardinal invariant $\lambda(S, J)$, GEYSER MATH. CASS. 1 (2019), 64–72.
- Šottová V. and Šupina J., Principle S₁ (P, R): ideals and functions, Topology Appl. 258 (2019), 282–304.

Thanks for Your attention!

A family $\mathcal{K} \subseteq \mathcal{P}(\omega)$ is called an ideal if

a) $B \in \mathcal{K}$ for any $B \subseteq A \in \mathcal{K}$, b) $A \cup B \in \mathcal{K}$ for any $A, B \in \mathcal{K}$, c) Fin = $[\omega]^{<\omega} \subseteq \mathcal{K}$, d) $\omega \notin \mathcal{K}$.

$\mathcal{I}, \mathcal{J}, \mathcal{K}$ are ideals in the following.

$$\begin{split} \mathcal{K} &\subseteq \mathcal{P}(\omega) \qquad \qquad \mathcal{K}^+ = \mathcal{P}(\omega) \setminus \mathcal{K} \\ \mathcal{A} &\subseteq \mathcal{P}(\omega) \qquad \qquad \mathcal{A}^d = \{A \subseteq \omega : \ \omega \setminus A \in \mathcal{A}\} \end{split}$$

 $\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a filter if \mathcal{F}^d is an ideal.

A maximal filter $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is called an ultrafilter.

Ideal covers

A sequence $\langle V_n : n \in \omega \rangle$ of open subsets of X such that $V_n \neq X$ is

- cover if for every $x \in X$ there is n such that $x \in V_n$.
- ω -cover if for every $a \in [X]^{<\omega}$ there is n such that $a \subseteq X$.
- \mathcal{I} - γ -cover if $\{n : x \notin V_n\} \in \mathcal{I}$ for every $x \in V_n$.
- γ -cover if $\{n : x \notin V_n\}$ is finite for every $x \in X$.

$$\Gamma \subseteq \mathcal{I}\text{-}\Gamma \subseteq \Omega \subseteq \mathcal{O}$$