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Institute of Mathematics
Faculty of Science
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The role of cov∗(I)

I min{cov∗(J ), bJ } ≤ b (P. Nyikos)

I min{cov∗(I), b} = λ(I, Fin) (V. Šottová and J.Š. 2019)
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I min{cov∗(J ), pK(I,J )} = cov∗(I)

I min{cov∗(I), bJ } ≤ λ(I,J ) ≤ bJ
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Problem 1: countable I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
Cp(X) has countable Fréchet-Urysohn property if and only if Cp(X) is
an S1(Ωct

0 ,Γ0)-space.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH:

I there is a meager ideal I,

I there is a set of reals A of size ω1,

I Cp(A) has countable I-Fréchet-Urysohn property,

I Cp(A) is not an S1(Ωct
0 , I-Γ0)-space.
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Problem 2: covering counterpart of I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an S1(Ωct,Γ)-space if and only if X has

(Ωct

Γ

)
.

Question (B. Tsaban ESTC 2019, Vienna)
Is it true that X is an S1(Ωct, I-Γ)-space if and only if X has

[Ωct

I-Γ

]
?
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Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of pKB(J ) and p1-1(J )?

non(
[Ωct

J -Γ

]
) = pK(J ) non(

[Ωct

J -Γ

]
KB

) = pKB(J ) non(
[Ωct

J -Γ

]
1-1

) = p1-1(J )

Different repetitions of elements (infinitely many, finitely many, none) in
the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is pK(J ) ≤ b for each analytic (P-)ideal J ?

Proposition
If J is a meager P-ideal then pK(J ) ≤ b.
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Pseudointersection numbers p and cov∗(I)

p = min{|A| : A ⊆ P(ω) has fup ∧ A does not have a pseudounion}

cov∗(I) = min{|A| : A ⊆ I ∧ A does not have a pseudounion}

Convention: min ∅ = +∞

Fin Fin× Fin S ED R conv nwd

+∞ b non(N ) non(M) c c cov(M)
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The inequality min{cov∗(J ), bJ } ≤ b

Observation
If X is an [J -Γ,Γ]-space and an S1(Γ,J -Γ)-space then X is an S1(Γ,Γ)-space.

Corollary

min{non([J -Γ,Γ]), non(S1(Γ,J -Γ))} ≤ non(S1(Γ,Γ))

I X is an [J -Γ,Γ]-space if for every 〈Vn : n ∈ ω〉 of J -γ-covers there is ϕ ∈ ωω
such that 〈Vϕ(m) : m ∈ ω〉 is a γ-cover.

I A sequence 〈Vn : n ∈ ω〉 of open subsets of X such that Vn 6= X is J -γ-cover if
{n : x 6∈ Vn} ∈ J for every x ∈ Vn.

I X is an S1(Γ,J -Γ)-space if for every 〈〈Vn,m : m ∈ ω〉 : n ∈ ω〉 of γ-covers
there is ϕ ∈ ωω such that 〈Vn,ϕ(n) : n ∈ ω〉 is a J -γ-cover.
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Pseudointersection numbers p�(J ) and p�(I,J )

� ∈ {1-1,KB,K}

p = min{|A| : A ⊆ P(ω) has fup ∧ A 6≤� Fin}

p�(J ) = min{|A| : A ⊆ P(ω) has fup ∧ A 6≤� J}

p�(I,J ) = min{|A| : A ⊆ I ∧ A 6≤� J}

p�(J ) = min{p�(I,J ) : I is an ideal}
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Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)
In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH
the following hold.

(1) There is a filter F with p1-1(F) = pKB(F) = pK(F) = ω2.

(2) There is a meager filter G with p1-1(G) = pKB(G) = ω1 and pK(G) = ω2.

(3) p1-1(J ) = pKB(J ) = pK(J ) = ω1 for every Fσ ideal J and every analytic
P-ideal J .
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Problem 2: covering counterpart of I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an S1(Ωct,Γ)-space if and only if X has

(Ωct

Γ

)
.

Question (B. Tsaban ESTC 2019, Vienna)
Is it true that X is an S1(Ωct, I-Γ)-space if and only if X has

[Ωct

I-Γ

]
?

P. Borodulin-Nadzieja and B. Farkas 2012
In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH:

I there is a meager ideal I,

I there is a set of reals A of size ω1,

I A has
[Ωct

I-Γ

]
,

I A is not an S1(Ωct, I-Γ)-space.



Problem 2: covering counterpart of I-Fréchet-Urysohn property

non(S1(Ωct,J -Γ)) = λ(∗,J ) non(
[Ωct

J -Γ

]
) = pK(J )

A sequence 〈Vn : n ∈ ω〉 of open subsets of X such that Vn 6= X is an ω-cover if for
every a ∈ [X]<ω there is n such that a ⊆ Vn. Ωct

Proposition
Let X be a topological space. If J has Baire property then

X is an S1(Ωct,J -Γ)-space if and only if X is an S1(Ωct,Γ)-space.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)
In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH there
is a meager ideal J such that pK(J ) = ω2.
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non(S1(Ωct,J -Γ)) = λ(∗,J ) non(
[Ωct

J -Γ

]
) = pK(J )

A sequence 〈Vn : n ∈ ω〉 of open subsets of X such that Vn 6= X is an ω-cover if for
every a ∈ [X]<ω there is n such that a ⊆ Vn. Ωct

Proposition
Let X be a topological space. If J has Baire property then

X is an S1(Ωct,J -Γ)-space if and only if X is an S1(Ωct,Γ)-space.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)
In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH there
is a meager ideal J such that pK(J ) = ω2.



Problem 1: countable I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
Cp(X) has countable Fréchet-Urysohn property if and only if Cp(X) is
an S1(Ωct

0 ,Γ0)-space countable covers.

P. Borodulin-Nadzieja and B. Farkas 2012

I-Fréchet-Urysohn property

In a Cohen forcing model adding ω2 many Cohen reals to a model of ZFC+GCH:

I there is a meager ideal I,

I there is a set of reals A of size ω1,

I Cp(A) has countable I-Fréchet-Urysohn property,

I Cp(A) is not an S1(Ωct
0 , I-Γ0)-space.



Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of pKB(J ) and p1-1(J )?

non(
[Ωct

J -Γ

]
) = pK(J ) non(

[Ωct

J -Γ

]
KB

) = pKB(J ) non(
[Ωct

J -Γ

]
1-1

) = p1-1(J )

Different repetitions of elements (infinitely many, finitely many, none) in
the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is pK(J ) ≤ b for each analytic (P-)ideal J ?

Proposition
If J is a meager P-ideal then pK(J ) ≤ b.



Problem 3: pseudointersection numbers
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Different repetitions of elements (infinitely many, finitely many, none) in
the enumeration of sequence.

Similarly for functional versions.

I X is an [Ωct,J -Γ]�-space if for every ω-cover 〈Vn : n ∈ ω〉 there is �-function
ϕ ∈ ωω such that 〈Vϕ(m) : m ∈ ω〉 is a J -γ-cover.

Observation
If X is a topological space then the following are equivalent.

(a) X is an [Ωct,J -Γ]�-space.

(b) For every family V which forms a countable open ω-cover there is a J -γ-cover
〈Vm : m ∈ ω〉 such that Vm ∈ V and a set Vm may be repeated �-many times in
the enumeration.
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Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is pK(J ) ≤ b for each analytic (P-)ideal J ?

Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)
If J is meager then pKB(J ) ≤ b.

Proposition (M. Repický 2018)
If J is a P-ideal then pK(I,J ) = pKB(I,J ).

Corollary
If J is a meager P-ideal then pK(J ) ≤ b.
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Critical cardinalities

p

λ(I, Fin)

b

λ(∗,J )

λ(I,J )

λ(Fin,J )

cov(M)

λ(I, ∗)

d

cov∗(I) pK(I,J )

pK(J )



Critical cardinalities

p

min{b, cov∗(I)}

b

λ(∗,J )

λ(I,J )

bJ

cov(M)

λ(I, ∗)

d

cov∗(I) pK(I,J )

pK(J )



Principle S1(P,R) and corresponding critical cardinality

Just W., Miller A.W., Scheepers M. and Szeptycki P.J., Combinatorics of open covers II, Topology Appl. 73 (1996), 241–266.

S1(Ωct,Γ)

p

S1(Γ,Γ)

b

S1(Ωct,Ω)

cov(M)

S1(Γ,Ω)

d

S1(Oct,O)

cov(M)

S1(Γ,O)

d



Principle S1(P,R) and ideal covers

S1(Ωct,Γ)

S1(I-Γ,Γ)

S1(Γ,Γ)

S1(Ωct,J -Γ)

S1(I-Γ,J -Γ)

S1(Γ,J -Γ)

S1(Ωct,Ω)

S1(I-Γ,Ω)

S1(Γ,Ω)

S1(Oct,O)

S1(I-Γ,O)

S1(Γ,O)



Principle S1(P,R) and corresponding critical cardinality
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Critical cardinalities

p

λ(I, Fin)

b

λ(∗,J )

λ(I,J )

λ(Fin,J )

cov(M)

λ(I, ∗)

d



Subsequence schema

[Ωct

J -Γ

]

[I-Γ
Γ

] [I-Γ
J -Γ

]

S1(Ωct,Γ) S1(Ωct,J -Γ)

S1(I-Γ,Γ) S1(I-Γ,J -Γ)



Sample values

V. Šottová and J.Š. 2019, V. Šottová 2019

λ(Fin, Fin) = b

I λ(S, Fin) = λ(S, S) = min{b, non(N )}

I λ(nwd, Fin) = λ(nwd, nwd) = add(M)

I λ(R,J ) = λ(Fin,J ) = bJ

I λ(conv,J ) = λ(Fin,J ) = bJ

I there is U such that λ(U , Fin) = p
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Thanks for Your attention!



A family K ⊆ P(ω) is called an ideal if

a) B ∈ K for any B ⊆ A ∈ K,

b) A ∪B ∈ K for any A,B ∈ K,

c) Fin = [ω]<ω ⊆ K,

d) ω 6∈ K.

I, J , K are ideals in the following.

K ⊆ P(ω) K+ = P(ω) \ K

A ⊆ P(ω) Ad = {A ⊆ ω : ω \A ∈ A}

F ⊆ P(ω) is a filter if Fd is an ideal.

A maximal filter U ⊆ P(ω) is called an ultrafilter.



Ideal covers

A sequence 〈Vn : n ∈ ω〉 of open subsets of X such that Vn 6= X is

I cover if for every x ∈ X there is n such that x ∈ Vn.

I ω-cover if for every a ∈ [X]<ω there is n such that a ⊆ X.

I I-γ-cover if {n : x 6∈ Vn} ∈ I for every x ∈ Vn.

I γ-cover if {n : x 6∈ Vn} is finite for every x ∈ X.

Γ ⊆ I-Γ ⊆ Ω ⊆ O


