Ideal pseudointersection numbers

Jaroslav Šupina

Institute of Mathematics
Faculty of Science
P.J. Šafárik University in Košice
$26^{\text {th }}$ of January 2020

Pseudointersection numbers

- $\mathfrak{p} \quad$ (F. Rothberger 1948)

Pseudointersection numbers

- $\mathfrak{p} \quad$ (F. Rothberger 1948)
(J. Brendle and S. Shelah 1999, $\quad \pi \mathfrak{p}(\mathcal{U})$
- $\operatorname{cov}^{*}(\mathcal{I})$
F. Hernández and M. Hrušák 2007)

Pseudointersection numbers

- \mathfrak{p} (F. Rothberger 1948)
$\begin{array}{lll}-\operatorname{cov}^{*}(\mathcal{I}) & \text { (J. Brendle and S. Shelah 1999, } & \pi \mathfrak{p}(\mathcal{U}) \\ & \text { F. Hernández and M. Hrušák 2007) }\end{array}$
- $\mathfrak{p}_{\square}(\mathcal{J}) \quad$ (P. Borodulin-Nadzieja and B. Farkas 2012)

Pseudointersection numbers

- $\mathfrak{p} \quad$ (F. Rothberger 1948)
$\begin{array}{lll}-\operatorname{cov}^{*}(\mathcal{I}) & \text { (J. Brendle and S. Shelah 1999, } & \pi \mathfrak{p}(\mathcal{U}) \\ & \text { F. Hernández and M. Hrušák 2007) }\end{array}$
- $\mathfrak{p}_{\square}(\mathcal{J}) \quad$ (P. Borodulin-Nadzieja and B. Farkas 2012)
- $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J}) \quad$ (M. Repický 2018)

Pseudointersection numbers

- $\mathfrak{p} \quad$ (F. Rothberger 1948)
$\begin{array}{lll}-\operatorname{cov}^{*}(\mathcal{I}) & \text { (J. Brendle and S. Shelah 1999, } & \pi \mathfrak{p}(\mathcal{U}) \\ & \text { F. Hernández and M. Hrušák 2007) }\end{array}$
- $\mathfrak{p}_{\square}(\mathcal{J}) \quad$ (P. Borodulin-Nadzieja and B. Farkas 2012)
- $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J}) \quad$ (M. Repický 2018)
- $\lambda(\triangle, \nabla) \quad$ (V. Šottová and J.Š.)

The role of $\operatorname{cov}^{*}(\mathcal{I})$

The role of $\operatorname{cov}^{*}(\mathcal{I})$

$-\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$
(P. Nyikos)

The role of $\operatorname{cov}^{*}(\mathcal{I})$

$-\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$
$-\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}=\lambda(\mathcal{I}$, Fin $) \quad$ (V. Šottová and J.Š. 2019)

The role of $\operatorname{cov}^{*}(\mathcal{I})$

- $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b} \mathcal{J}\right\} \leq \mathfrak{b}$
(P. Nyikos)
$-\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}=\lambda(\mathcal{I}$, Fin $) \quad$ (V. Šottová and J.Š. 2019)
$-\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\right\}=\mathfrak{p}$

The role of $\operatorname{cov}^{*}(\mathcal{I})$

- $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b} \mathcal{J}\right\} \leq \mathfrak{b}$
(P. Nyikos)
$-\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}=\lambda(\mathcal{I}$, Fin $) \quad$ (V. Šottová and J.Š. 2019)
$-\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\right\}=\mathfrak{p}$
- $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})\right\}=\operatorname{cov}^{*}(\mathcal{I})$

The role of $\operatorname{cov}^{*}(\mathcal{I})$

$-\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b} \quad$ (P. Nyikos)
$-\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}\right\}=\lambda(\mathcal{I}$, Fin $) \quad$ (V. Šottová and J.Š. 2019)

- $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{J})\right\}=\mathfrak{p}$
- $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})\right\}=\operatorname{cov}^{*}(\mathcal{I})$
- $\min \left\{\operatorname{cov}^{*}(\mathcal{I}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \lambda(\mathcal{I}, \mathcal{J}) \leq \mathfrak{b}_{\mathcal{J}}$

Problem 1: countable \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{\mathbf{0}}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space.

Problem 1: countable \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{0}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space.
P. Borodulin-Nadzieja and B. Farkas 2012
\mathcal{I}-Fréchet-Urysohn property

Problem 1: countable \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{0}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space.

P. Borodulin-Nadzieja and B. Farkas 2012

\mathcal{I}-Fréchet-Urysohn property

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC+GCH:

Problem 1: countable \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{\mathbf{0}}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space.

P. Borodulin-Nadzieja and B. Farkas 2012

```
I-Fréchet-Urysohn property
```

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of $\mathbf{Z F C}+\mathbf{G C H}$:

- there is a meager ideal \mathcal{I},
- there is a set of reals A of size ω_{1},

Problem 1: countable \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{0}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space.

P. Borodulin-Nadzieja and B. Farkas 2012

```
I-Fréchet-Urysohn property
```

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of $\mathbf{Z F C}+\mathbf{G C H}$:

- there is a meager ideal \mathcal{I},
- there is a set of reals A of size ω_{1},
- $C_{p}(A)$ has countable \mathcal{I}-Fréchet-Urysohn property,
- $C_{p}(A)$ is not an $\mathrm{S}_{1}\left(\Omega_{\mathbf{0}}^{\mathrm{ct}}, \mathcal{I}\right.$ - $\left.\Gamma_{\mathbf{0}}\right)$-space.

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \Gamma\right)$-space if and only if X has $\binom{\Omega^{c t}}{\Gamma}$.

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \Gamma\right)$-space if and only if X has $\binom{\Omega^{c t}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna)
Is it true that X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{I}-\Gamma\right)$-space if and only if X has $\left[\begin{array}{c}\Omega^{\mathrm{ct}} \\ \mathcal{I}-\Gamma\end{array}\right]$?

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \Gamma\right)$-space if and only if X has $\binom{\Omega^{c t}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna)
Is it true that X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{I}-\Gamma\right)$-space if and only if X has $\left[\begin{array}{c}\Omega^{\mathrm{ct}} \\ \mathcal{I}-\Gamma\end{array}\right]$?
P. Borodulin-Nadzieja and B. Farkas 2012

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC $+\mathbf{G C H}$:

- there is a meager ideal \mathcal{I},
- there is a set of reals A of size ω_{1},
- A has $\left[\begin{array}{c}\Omega_{-\Gamma}^{c t} \\ \bar{I}]\end{array}\right]$,
- A is not an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{I}\right.$ - $\left.\Gamma\right)$-space.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{l}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\Omega_{\mathcal{J}-\Gamma}^{\Omega_{\mathrm{Ct}}}\right]_{\mathrm{KB}}\right)=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\left[_{\mathcal{J}-\Gamma}^{\Omega^{\mathrm{ct}}}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})\right.
$$

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]_{\mathrm{KB}}\right)=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]_{\mathrm{KB}}\right)=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{\mathrm{ct}}
\end{array}\right]_{\mathrm{KB}}\right)=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\left.\Omega_{\mathcal{J}}^{\mathrm{ct}}\right]_{\mathrm{KB}}
\end{array}\right]_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})\right.
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Proposition

If \mathcal{J} is a meager P -ideal then $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$.

Pseudointersection numbers \mathfrak{p} and $\operatorname{cov}^{*}(\mathcal{I})$

$\mathfrak{p} \quad=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega)$ has fup $\wedge \mathcal{A}$ does not have a pseudounion $\}$

Pseudointersection numbers \mathfrak{p} and $\operatorname{cov}^{*}(\mathcal{I})$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \text { does not have a pseudounion }\} \\
\operatorname{cov}^{*}(\mathcal{I})= & \min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \text { does not have a pseudounion }\}
\end{array}
$$

Pseudointersection numbers \mathfrak{p} and $\operatorname{cov}^{*}(\mathcal{I})$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \text { does not have a pseudounion }\} \\
\operatorname{cov}^{*}(\mathcal{I})= & \min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \text { does not have a pseudounion }\}
\end{array}
$$

Convention: $\min \emptyset=+\infty$

Pseudointersection numbers \mathfrak{p} and $\operatorname{cov}^{*}(\mathcal{I})$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \text { does not have a pseudounion }\} \\
\operatorname{cov}^{*}(\mathcal{I})= & \min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \text { does not have a pseudounion }\}
\end{array}
$$

Convention: $\min \emptyset=+\infty$

Fin	Fin \times Fin	S	$\mathcal{E} D$	\mathcal{R}	conv	nwd
$+\infty$	\mathfrak{b}	$\operatorname{non}(\mathcal{N})$	$\operatorname{non}(\mathcal{M})$	\mathfrak{c}	\mathfrak{c}	$\operatorname{cov}(\mathcal{M})$

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

Observation
If X is an $[\mathcal{J}-\Gamma, \Gamma]$-space and an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

Observation
If X is an $[\mathcal{J}-\Gamma, \Gamma]$-space and an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.
Corollary

$$
\min \left\{\operatorname{non}([\mathcal{J}-\Gamma, \Gamma]), \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)\right)\right\} \leq \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \Gamma)\right)
$$

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

Observation

If X is an $[\mathcal{J}-\Gamma, \Gamma]$-space and an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.
Corollary

$$
\min \left\{\operatorname{non}([\mathcal{J}-\Gamma, \Gamma]), \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)\right)\right\} \leq \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \Gamma)\right)
$$

- X is an $[\mathcal{J}-\Gamma, \Gamma]$-space if for every $\left\langle V_{n}: n \in \omega\right\rangle$ of \mathcal{J} - γ-covers there is $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{\varphi(m)}: m \in \omega\right\rangle$ is a γ-cover.

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

Observation

If X is an $[\mathcal{J}-\Gamma, \Gamma]$-space and an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.
Corollary

$$
\min \left\{\operatorname{non}([\mathcal{J}-\Gamma, \Gamma]), \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)\right)\right\} \leq \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \Gamma)\right)
$$

- X is an $[\mathcal{J}-\Gamma, \Gamma]$-space if for every $\left\langle V_{n}: n \in \omega\right\rangle$ of \mathcal{J} - γ-covers there is $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{\varphi(m)}: m \in \omega\right\rangle$ is a γ-cover.
- A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is \mathcal{J} - γ-cover if $\left\{n: x \notin V_{n}\right\} \in \mathcal{J}$ for every $x \in V_{n}$.

The inequality $\min \left\{\operatorname{cov}^{*}(\mathcal{J}), \mathfrak{b}_{\mathcal{J}}\right\} \leq \mathfrak{b}$

Observation

If X is an $[\mathcal{J}-\Gamma, \Gamma]$-space and an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space then X is an $\mathrm{S}_{1}(\Gamma, \Gamma)$-space.
Corollary

$$
\min \left\{\operatorname{non}([\mathcal{J}-\Gamma, \Gamma]), \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)\right)\right\} \leq \operatorname{non}\left(\mathrm{S}_{1}(\Gamma, \Gamma)\right)
$$

- X is an $[\mathcal{J}-\Gamma, \Gamma]$-space if for every $\left\langle V_{n}: n \in \omega\right\rangle$ of \mathcal{J} - γ-covers there is $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{\varphi(m)}: m \in \omega\right\rangle$ is a γ-cover.
- A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is \mathcal{J} - γ-cover if $\left\{n: x \notin V_{n}\right\} \in \mathcal{J}$ for every $x \in V_{n}$.
- X is an $\mathrm{S}_{1}(\Gamma, \mathcal{J}-\Gamma)$-space if for every $\left\langle\left\langle V_{n, m}: m \in \omega\right\rangle: n \in \omega\right\rangle$ of γ-covers there is $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{n, \varphi(n)}: n \in \omega\right\rangle$ is a $\mathcal{J}-\gamma$-cover.

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$
$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

$$
\mathfrak{p} \quad=\min \{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \leq \square \mathrm{Fin}\}
$$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \text { Fin }\right\} \\
\mathfrak{p}_{\square}(\mathcal{J}) & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\}
\end{array}
$$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$
$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \text { Fin }\right\} \\
\mathfrak{p}_{\square}(\mathcal{J}) & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\} \\
\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})= & \min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\}
\end{array}
$$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$
$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \text { Fin }\right\} \\
\mathfrak{p}_{\square}(\mathcal{J}) & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\} \\
\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})=\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\} \\
\mathfrak{p}_{\square}(\mathcal{J})=\min \left\{\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J}): \mathcal{I} \text { is an ideal }\right\}
\end{array}
$$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

$\square \in\{1-1, \mathrm{~KB}, \mathrm{~K}\}$

$$
\begin{array}{ll}
\mathfrak{p} & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \text { Fin }\right\} \\
\mathfrak{p}_{\square}(\mathcal{J}) & =\min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{P}(\omega) \text { has fup } \wedge \mathcal{A} \not \mathbb{Z}_{\square} \mathcal{J}\right\} \\
\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})= & \min \left\{|\mathcal{A}|: \mathcal{A} \subseteq \mathcal{I} \wedge \mathcal{A} \not \mathbb{Z}_{\square \mathcal{J}\}}\right. \\
\mathfrak{p}_{\square}(\mathcal{J})=\min \left\{\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J}): \mathcal{I} \text { is an ideal }\right\}
\end{array}
$$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)
In a Cohen forcing model adding ω_{2} many Cohen reals to a model of $\mathbf{Z F C}+\mathbf{G C H}$ the following hold.

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)
In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC $+\mathbf{G C H}$ the following hold.
(1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{F})=\mathfrak{p}_{\mathrm{K}}(\mathcal{F})=\omega_{2}$.

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC+GCH the following hold.
(1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{F})=\mathfrak{p}_{\mathrm{K}}(\mathcal{F})=\omega_{2}$.
(2) There is a meager filter \mathcal{G} with $\mathfrak{p}_{1-1}(\mathcal{G})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{G})=\omega_{1}$ and $\mathfrak{p}_{\mathrm{K}}(\mathcal{G})=\omega_{2}$.

Pseudointersection numbers $\mathfrak{p}_{\square}(\mathcal{J})$ and $\mathfrak{p}_{\square}(\mathcal{I}, \mathcal{J})$

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC+GCH the following hold.
(1) There is a filter \mathcal{F} with $\mathfrak{p}_{1-1}(\mathcal{F})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{F})=\mathfrak{p}_{\mathrm{K}}(\mathcal{F})=\omega_{2}$.
(2) There is a meager filter \mathcal{G} with $\mathfrak{p}_{1-1}(\mathcal{G})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{G})=\omega_{1}$ and $\mathfrak{p}_{\mathrm{K}}(\mathcal{G})=\omega_{2}$.
(3) $\mathfrak{p}_{1-1}(\mathcal{J})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})=\mathfrak{p}_{\mathrm{K}}(\mathcal{J})=\omega_{1}$ for every F_{σ} ideal \mathcal{J} and every analytic P-ideal \mathcal{J}.

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \Gamma\right)$-space if and only if X has $\binom{\Omega^{c t}}{\Gamma}$.

Question (B. Tsaban ESTC 2019, Vienna)
Is it true that X is an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{I}-\Gamma\right)$-space if and only if X has $\left[\begin{array}{c}\left.\Omega_{\mathcal{L}}^{\mathrm{ct}}\right]\end{array}\right]$?

P. Borodulin-Nadzieja and B. Farkas 2012

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC+GCH:

- there is a meager ideal \mathcal{I},
- there is a set of reals A of size ω_{1},
- A has $\left[\begin{array}{c}\Omega_{\mathcal{C t}}^{\mathrm{ct}} \\ \overline{\mathrm{I}}\end{array}\right]$,
- A is not an $\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{I}\right.$ - $\left.\Gamma\right)$-space.

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right)\right)=\lambda(*, \mathcal{J})
$$

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega^{c t} \\
\mathcal{J}-\Gamma
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J})
$$

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right)\right)=\lambda(*, \mathcal{J})
$$

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega^{c t} \\
\mathcal{J}-\Gamma
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J})
$$

A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is an ω-cover if for every $a \in[X]^{<\omega}$ there is n such that $a \subseteq V_{n} . \quad \Omega^{\text {ct }}$

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right)\right)=\lambda(*, \mathcal{J})
$$

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J})
$$

A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is an ω-cover if for every $a \in[X]^{<\omega}$ there is n such that $a \subseteq V_{n} . \quad \Omega^{\text {ct }}$

Proposition

Let X be a topological space. If \mathcal{J} has Baire property then X is an $\mathrm{S}_{1}\left(\Omega^{c t}, \mathcal{J}-\Gamma\right)$-space if and only if X is an $\mathrm{S}_{1}\left(\Omega^{c t}, \Gamma\right)$-space.

Problem 2: covering counterpart of \mathcal{I}-Fréchet-Urysohn property

$$
\operatorname{non}\left(\mathrm{S}_{1}\left(\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right)\right)=\lambda(*, \mathcal{J})
$$

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega^{\mathrm{ct}} \\
\mathcal{J}-\Gamma
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J})
$$

A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is an ω-cover if for every $a \in[X]<\omega$ there is n such that $a \subseteq V_{n} . \quad \Omega^{\text {ct }}$

Proposition

Let X be a topological space. If \mathcal{J} has Baire property then
X is an $\mathrm{S}_{1}\left(\Omega^{c t}, \mathcal{J}-\Gamma\right)$-space if and only if X is an $\mathrm{S}_{1}\left(\Omega^{c t}, \Gamma\right)$-space.

Theorem (P. Borodulin-Nadzieja and B. Farkas 2012)

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of ZFC+GCH there is a meager ideal \mathcal{J} such that $\mathfrak{p}_{\mathrm{K}}(\mathcal{J})=\omega_{2}$.

Problem 1: countable I-Fréchet-Urysohn property

Theorem (J. Gerlits and Zs. Nagy 1982)
$C_{p}(X)$ has countable Fréchet-Urysohn property if and only if $C_{p}(X)$ is an $\mathrm{S}_{1}\left(\Omega_{0}^{\mathrm{ct}}, \Gamma_{\mathbf{0}}\right)$-space countable covers.

P. Borodulin-Nadzieja and B. Farkas 2012

```
I}\mathrm{ -Fréchet-Urysohn property
```

In a Cohen forcing model adding ω_{2} many Cohen reals to a model of $\mathbf{Z F C}+\mathbf{G C H}$:

- there is a meager ideal \mathcal{I},
- there is a set of reals A of size ω_{1},
- $C_{p}(A)$ has countable \mathcal{I}-Fréchet-Urysohn property,
- $C_{p}(A)$ is not an $\mathrm{S}_{1}\left(\Omega_{\mathbf{0}}^{\mathrm{ct}}, \mathcal{I}\right.$ - $\left.\Gamma_{\mathbf{0}}\right)$-space.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\left.\Omega_{\mathcal{J}}^{\mathrm{ct}}\right]_{\mathrm{KB}}
\end{array}\right]_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})\right.
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
Is $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Proposition

If \mathcal{J} is a meager P -ideal then $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

- X is an $\left[\Omega^{\text {ct }}, \mathcal{J}-\Gamma\right]_{\square}$-space if for every ω-cover $\left\langle V_{n}: n \in \omega\right\rangle$ there is \square-function $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{\varphi(m)}: m \in \omega\right\rangle$ is a \mathcal{J} - γ-cover.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)

Do there exist reasonable topological characterizations of $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J})$ and $\mathfrak{p}_{1-1}(\mathcal{J})$?

$$
\operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]\right)=\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]_{\mathrm{KB}}\right)=\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \quad \operatorname{non}\left(\left[\begin{array}{c}
\Omega_{\mathcal{J}-\Gamma}^{c t}
\end{array}\right]_{1-1}\right)=\mathfrak{p}_{1-1}(\mathcal{J})
$$

Different repetitions of elements (infinitely many, finitely many, none) in the enumeration of sequence.

Similarly for functional versions.

- X is an $\left[\Omega^{\text {ct }}, \mathcal{J}-\Gamma\right]_{\square}$-space if for every ω-cover $\left\langle V_{n}: n \in \omega\right\rangle$ there is \square-function $\varphi \in{ }^{\omega} \omega$ such that $\left\langle V_{\varphi(m)}: m \in \omega\right\rangle$ is a \mathcal{J} - γ-cover.

Observation

If X is a topological space then the following are equivalent.
(a) X is an $\left[\Omega^{\mathrm{ct}}, \mathcal{J}-\Gamma\right]_{\square}$-space.
(b) For every family \mathcal{V} which forms a countable open ω-cover there is a $\mathcal{J}-\gamma$-cover $\left\langle V_{m}: m \in \omega\right\rangle$ such that $V_{m} \in \mathcal{V}$ and a set V_{m} may be repeated \square-many times in the enumeration.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
$I_{\mathfrak{p}_{\mathrm{K}}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
$I_{s} \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)
If \mathcal{J} is meager then $\mathfrak{p}_{\text {кв }}(\mathcal{J}) \leq \mathfrak{b}$.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
$s_{\mathfrak{p}_{\mathrm{K}}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)
If \mathcal{J} is meager then $\mathfrak{p}_{\mathrm{KB}}(\mathcal{J}) \leq \mathfrak{b}$.
Proposition (M. Repický 2018)
If \mathcal{J} is a P-ideal then $\mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{I}, \mathcal{J})$.

Problem 3: pseudointersection numbers

Problem (P. Borodulin-Nadzieja and B. Farkas 2012)
$I_{s} \mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$ for each analytic (P-)ideal \mathcal{J} ?

Proposition (P. Borodulin-Nadzieja and B. Farkas 2012)
If \mathcal{J} is meager then $\mathfrak{p}_{\text {KB }}(\mathcal{J}) \leq \mathfrak{b}$.
Proposition (M. Repický 2018)
If \mathcal{J} is a P -ideal then $\mathfrak{p}_{\mathrm{K}}(\mathcal{I}, \mathcal{J})=\mathfrak{p}_{\mathrm{KB}}(\mathcal{I}, \mathcal{J})$.
Corollary
If \mathcal{J} is a meager P -ideal then $\mathfrak{p}_{\mathrm{K}}(\mathcal{J}) \leq \mathfrak{b}$.

Critical cardinalities

Critical cardinalities

Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and corresponding critical cardinality

Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and ideal covers

Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$ and corresponding critical cardinality

Critical cardinalities

Subsequence schema

Sample values

V. Šottová and J.Š. 2019, V. Šottová 2019
$\lambda($ Fin, Fin $)=\mathfrak{b}$

- $\lambda(\mathrm{S}$, Fin $)=\lambda(\mathrm{S}, \mathrm{S})=\min \{\mathfrak{b}, \operatorname{non}(\mathcal{N})\}$
- $\lambda($ nwd, $\operatorname{Fin})=\lambda(n w d, n w d)=\operatorname{add}(\mathcal{M})$
- $\lambda(\mathcal{R}, \mathcal{J})=\lambda($ Fin, $\mathcal{J})=\mathfrak{b}_{\mathcal{J}}$
- $\lambda(\operatorname{conv}, \mathcal{J})=\lambda($ Fin, $\mathcal{J})=\mathfrak{b}_{\mathcal{J}}$
- there is \mathcal{U} such that $\lambda(\mathcal{U}$, Fin $)=\mathfrak{p}$

Borodulin-Nadzieja P. and Farkas B., Cardinal coefficients associated to certain orders on ideals, Arch. Math. Logic 51 (2012), 187-202.

Brendle J. and Shelah S., Ultrafilters on ω-their ideals and their cardinal characteristics, Trans. Amer. Math. Soc. 351 (1999), 2643-2674.

Gerlits J. and Nagy Zs., Some properties of $C_{p}(X)$, I, Topology Appl. 14 (1982), 151-161.
Hernández F. and Hrušák M., Cardinal invariants of analytic P-ideals, Canad.J.Math. 59 (2007), 575-595.
Hrušák M., Combinatorics of filters and ideals, Contemp. Math. 533 (2011), 29-69.
Das P., Certain types of open covers and selection principles using ideals, Houston J. Math. 39 (2013), 637-650.
Nyikos P., Special ultrafilters and cofinal subsets of $\left({ }^{\omega} \omega,<^{*}\right)$, preprint.

Repický M., Spaces not distinguishing ideal convergences of real-valued functions, preprint.

Rothberger F., On some problems of Hausdorff and of Sierpiński, Fund. Math. 35 (1948), 29-46.
Šottová V., Cardinal invariant $\lambda(\mathcal{S}, \mathcal{J})$, GEYSER MATH. CASS. 1 (2019), 64-72.
Šottová V. and Šupina J., Principle $\mathrm{S}_{1}(\mathcal{P}, \mathcal{R})$: ideals and functions, Topology Appl. 258 (2019), 282-304.

Thanks for Your attention!

A family $\mathcal{K} \subseteq \mathcal{P}(\omega)$ is called an ideal if
a) $B \in \mathcal{K}$ for any $B \subseteq A \in \mathcal{K}$,
b) $A \cup B \in \mathcal{K}$ for any $A, B \in \mathcal{K}$,
c) Fin $=[\omega]^{<\omega} \subseteq \mathcal{K}$,
d) $\omega \notin \mathcal{K}$.
$\mathcal{I}, \mathcal{J}, \mathcal{K}$ are ideals in the following.
$\mathcal{K} \subseteq \mathcal{P}(\omega)$
$\mathcal{K}^{+}=\mathcal{P}(\omega) \backslash \mathcal{K}$
$\mathcal{A} \subseteq \mathcal{P}(\omega) \quad \mathcal{A}^{d}=\{A \subseteq \omega: \omega \backslash A \in \mathcal{A}\}$
$\mathcal{F} \subseteq \mathcal{P}(\omega)$ is a filter if \mathcal{F}^{d} is an ideal.
A maximal filter $\mathcal{U} \subseteq \mathcal{P}(\omega)$ is called an ultrafilter.

Ideal covers

A sequence $\left\langle V_{n}: n \in \omega\right\rangle$ of open subsets of X such that $V_{n} \neq X$ is

- cover if for every $x \in X$ there is n such that $x \in V_{n}$.
- ω-cover if for every $a \in[X]<\omega$ there is n such that $a \subseteq X$.
- \mathcal{I} - γ-cover \quad if $\left\{n: x \notin V_{n}\right\} \in \mathcal{I}$ for every $x \in V_{n}$.
$-\gamma$-cover \quad if $\left\{n: x \notin V_{n}\right\}$ is finite for every $x \in X$.

$$
\Gamma \subseteq \mathcal{I}-\Gamma \subseteq \Omega \subseteq \mathcal{O}
$$

